Online Speaker Adaptation of an Acoustic Model Using Face Recognition
نویسندگان
چکیده
We have proposed and evaluated a novel approach for online speaker adaptation of an acoustic model based on face recognition. Instead of traditionally used audio-based speaker identification we investigated the video modality for the task of speaker detection. A simulated on-line transcription created by a Large-Vocabulary Continuous Speech Recognition (LVCSR) system for online subtitling is evaluated utilizing speaker independent acoustic models, gender dependent models and models of particular speakers. In the experiment, the speaker dependent acoustic models were trained offline, and are switched online based on the decision of a face recognizer, which reduced Word Error Rate (WER) by 12% relatively compared to speaker independent baseline system.
منابع مشابه
Robust several-speaker speech recognition with highly dependable online speaker adaptation and identification
The currently adaptive mechanisms adapt a single acoustic model for a speaker in speaker-independent speech recognition system. However, as more users use the same speech recognizer, single acoustic model adaptation leads to negative adaptation upon switching between users. Such a situation is problematic (undependable adaptation). This paper, considering the situation of a smart home or an off...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملHindi Speech Recognition and Online Speaker Adaptation
Speaker Adaptation is a technique which is used to improve the recognition accuracy of Automatic Speech Recognition (ASR) systems. Here, we report a study of the impact of online speaker adaptation on the performance of a speaker independent, continuous speech recognition system for Hindi language. The speaker adaptation is performed using the Maximum Likelihood Linear Regression (MLLR) transfo...
متن کامل